博客
关于我
hdu 2035 人见人爱A^B
阅读量:139 次
发布时间:2019-02-27

本文共 405 字,大约阅读时间需要 1 分钟。

这段代码展示了一个快速幂函数的实现,主要用于模运算下的幂计算。代码结构清晰,采用了模块化编程的方式,体现了良好的可读性和可维护性。

代码的核心部分是一个快速幂函数qp,参数包括底数a、指数b以及模数mod。函数通过循环将指数b逐步处理,利用模运算优化了计算过程,避免了大数计算带来的性能问题。每次循环中,如果当前的b的最低位是1,则将结果res乘以a再取模;同时将a平方并对mod取模,b右移一位以处理下一个位。这种方法的时间复杂度将从O(log b)优化到O(1)级别。

主函数main中,作者使用scanf读取输入的两个整数a和b,并在输入不为0时调用qp函数计算快速幂结果。循环结构允许用户多次输入数据进行计算,这种设计使得程序更加灵活。值得注意的是,程序中没有添加错误检查和输入验证,这在实际应用中可能会带来安全隐患。

如果需要,可以在函数中添加输入参数的错误检查和数据类型的验证,以增强程序的健壯性。

转载地址:http://tgnb.baihongyu.com/

你可能感兴趣的文章
NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
查看>>
null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
查看>>
Numix Core 开源项目教程
查看>>
numpy
查看>>
NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
查看>>
numpy 或 scipy 有哪些可能的计算可以返回 NaN?
查看>>
numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
查看>>
numpy 数组与矩阵的乘法理解
查看>>
NumPy 数组拼接方法-ChatGPT4o作答
查看>>
numpy 用法
查看>>
Numpy 科学计算库详解
查看>>
Numpy.fft.fft和numpy.fft.fftfreq有什么不同
查看>>
Numpy.ndarray对象不可调用
查看>>
Numpy:按多个条件过滤行?
查看>>
Numpy:条件总和
查看>>
numpy、cv2等操作图片基本操作
查看>>
NumPy中的精度:比较数字时的问题
查看>>
numpy判断对应位置是否相等,all、any的使用
查看>>
Numpy如何使用np.umprod重写range函数中i的python
查看>>
numpy学习笔记3-array切片
查看>>